That batteries have a finite life is due to occurrence of the unwanted chemical or physical changes to, or the loss of, the active materials of which they are made. Otherwise they would last indefinitely. These changes are usually irreversible and they affect the electrical performance of the cell.
Battery life can usually only be extended by preventing or reducing the cause of the unwanted parasitic chemical effects which occur in the cells. Some ways of improving battery life and hence reliability are considered below.
Battery cycle life is defined as the number of complete charge - discharge cycles a battery can perform before its nominal capacity falls below 80% of its initial rated capacity. Lifetimes of 500 to 1200 cycles are typical. The actual ageing process results in a gradual reduction in capacity over time. When a cell reaches its specified lifetime it does not stop working suddenly. The ageing process continues at the same rate as before so that a cell whose capacity had fallen to 80% after 1000 cycles will probably continue working to perhaps 2000 cycles when its effective capacity will have fallen to 60% of its original capacity. There is therefore no need to fear a sudden death when a cell reaches the end of its specified life. See also Performance Characteristics.
An alternative measure of cycle life is based on the internal resistance of the cell. In this case the cycle life is defined as the numer of cycles the battery can perform before its internal resistance increases by an agreed amount., usually 1.3 times or double its initial value when new.
In both cases the cycle life depends on the depth of discharge and assumes that the battery is fully charged and discharged each cycle. If the battery is only partially discharged each cycle then the cycle life will be much greater. See Depth of Discharge below. It is therefore important that the Depth of Discharge should be stated when specifying the cycle life.
When battery systems are specified it is usual to dimension the battery in terms of its end of life capacity rather than its capacity when new.
Battery shelf life is the time an inactive battery can be stored before it becomes unusable, usually considered as having only 80% of its initial capacity as above. See also Battery Storage
Battery calendar life is the elapsed time before a battery becomes unusable whether it is in active use or inactive as above.
Chemical Changes
Batteries are electrochemical devices which convert chemical energy into electrical energy or vice versa by means of controlled chemical reactions between a set of active chemicals. Unfortunately the desired chemical reactions on which the battery depends are usually accompanied by unwanted chemical reactions which consume some of the active chemicals or impede their reactions. Even if the cell's active chemicals remain unaffected over time, cells can fail because unwanted chemical or physical changes to the seals keeping the electrolyte in place.
Temperature effects
Chemical reactions internal to the battery are driven either by voltage or temperature. The hotter the battery, the faster chemical reactions will occur. High temperatures can thus provide increased performance, but at the same time the rate of the unwanted chemical reactions will increase resulting in a corresponding loss of battery life. The shelf life and charge retention depend on the self discharge rate and self discharge is the result of an unwanted chemical reaction in the cell. Similarly adverse chemical reactions such as passivation of the electrodes, corrosion and gassing are common causes of reduced cycle life. Temperature therefore affects both the shelf life and the cycle life as well as charge retention since they are all due to chemical reactions. Even batteries which are specifically designed around high temperature chemical reactions, (such as Zebra batteries) are not immune to heat induced failures which are the result of parasitic reactions within the cells.
The Arrhenius equation defines the relationship between temperature and the rate at which a chemical action proceeds. It shows that the rate increases exponentially as temperature rises. As a rule of thumb, for every 10 °C increase in temperature the reaction rate doubles. Thus, an hour at 35 °C is equivalent in battery life to two hours at 25 °C. Heat is the enemy of the battery and as Arrhenius shows, even small increases in temperature will have a major influence on battery performance affecting both the desired and undesired chemical reactions.
The graph below shows how the life of high capacity tubular Ironclad Lead Acid batteries used in standby applications over may years varies with the operating temperature. Note that running at 35 °C, the batteries will deliver more than their rated capacity but their life is relatively short, whereas an extended life is possible if the batteries are maintained at 15 °C.
Tags: HP Business Notebook NC4000 battery, Dell Inspiron e1705 battery, Dell Inspiron 1525 battery
没有评论:
发表评论